Effect of texture evolution on mechanical and damping properties of SiC/ZnAl2O4/Al composite through friction stir processing
نویسندگان
چکیده
In this investigation, special consideration was given to observe the influence of the acquired ultra-fine-grain (UFG) structure through friction stir processing (FSP) on mechanical and damping properties. As the mechanical behaviour of the composites are intensely related to their microstructure. For deeply understanding the possible mechanism and detailed microstructural observations at a longitudinal cross-section of friction stir processed pure aluminium and several composites reinforced with bare SiC, Al2O3 coated SiC and ZnAl2O4 coated SiC were investigated through EBSD analysis. The mechanical as well as thermal cyclic (from −100 to 400 C) damping performance of the friction stir processed composites were studied, respectively. Our first principles calculations show that the storage modulus of the resultant composite SiC/ZnAl2O4/Al was enhanced by a factor of ∼1.9 after FSP as compare to parent Al. The ultimate tensile strength (UTS) of the friction stir processed SiC/ZnAl2O4/Al composite was enhanced by a factor of 3.3 and the acquired microhardness was almost doubled as compare to parent FS processed pure aluminium mainly because of significant grain refinement according to Hall–Petch relationship. Finally, improved properties, attributable to stabilization, enhanced distribution of the tailored SiC particles, improved load transferring capacity and better interface bonding between encapsulated reinforcements and matrix of FS processed composites were obtained with potential application in aerospace and automobile industries. © 2018 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
منابع مشابه
Fabrication of Al/Graphite/Al2O3 Surface Hybrid Nano Composite by Friction Stir Processing and Investigating The Wear and Microstructural Properties of The Composite
Friction stir processing was applied for fabricating an aluminum alloy based hybrid nano composite reinforced with nano sized Al2O3 and micro sized graphite particles. A mixture of Al2O3 and graphite particles was packed into a groove with 1 mm width and 4.5 mm depth, which had been cut in 5083 aluminum plate of 10 mm thick. Packed groove was subjected to friction stir processing in order to im...
متن کاملInvestigating the effect of tool dimension and rotational speed on microstructure of Al-B4C surface composite layer produced by friction stir processing (FSP)
Friction stir processing (FSP) was used for the fabrication of Al-B4C surface composite. Al-Mg-Si alloy was considered as the substrate and B4C particles were incorporated into the substrate by thermo-mechanical effect of FSP. The effect of tool dimensions and different rotational speeds on the microstructure and microhardness of the composite layers was evaluated and the optimum process parame...
متن کاملProduction of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing
In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...
متن کاملProduction of Dispersed Ceramic Nano-Particles in Al Alloy Using Friction Stir Processing
In this research, surface composite layers containing nano sized TiB2, Al2O3-TiB2, ZrO2 and CNT particles have been fabricated on Aluminum alloy substrates by friction stir processing. The effects of different processing variables such as number of passes and strengthening particle distribution, hardness, and wear properties of surface nano...
متن کاملThe Effect of Heat Treatment on the Microstructure and Mechanical Properties of Al/Al3Zr + Al3Ti In-situ Hybrid Composite Fabricated by Friction Stir Processing
In this research, an in-situ hybrid composite reinforced by Al3Zr and Al3Ti aluminide particles was fabricated by friction stir processing (FSP). The base metal was in the form of a rolled Al 3003-H14 alloy sheet, and zirconium and titanium metal powders were used as the reinforcements. Six passes of FSP were applied. Tensile strength and hardness of the base metal, as well as FSPed samples bef...
متن کامل